
RF 94RM-058: page 1 RF

The Complementary Roles of Simulation
 and Sneak Analysis

James L. Vogas • Boeing Aerospace Operations, Inc. • Houston

Key Words: Sneak Analysis, Simulation, Network trees, Forests, Sneak condition

SUMMARY & CONCLUSIONS

Sneak Analysis complements simulation and testing by
uncovering problems that may not be otherwise detected.
Sneak Analysis does not predict system behavior for
component failures or specific operational scenarios and,
therefore, is not a replacement for simulation and testing.
Simulation can be used to better understand the impact of
conditions uncovered by Sneak Analysis and to evaluate fixes.
Sneak Analysis can reduce schedule risks and costs by
detecting errors before fabrication. Detection of potential
operational problems through Sneak Analysis, including those
which might appear as intermittent failures, can reduce
operating costs and improve dispatch reliability. The detailed
topological diagrams produced during Sneak Analysis are also
useful for other analyses, evaluating design changes, and test
planning and troubleshooting.

1. INTRODUCTION

Unexpected behavior of systems is of increasing concern
to system designers, program managers, and system users.
Such unexpected behavior can be caused by the failure of
components (where failure means breakage), or by modes of
operation which were not anticipated during design. This
second type of behavior is known as a sneak condition.
Whereas component failures do not exist until some point in
time, sneak conditions are latent or built-in and can happen at
anytime. They may exist in hardware, in software, or in the
interaction of the hardware and software. While sneak
conditions are not caused by component failure, a sneak
condition may result in the failure of components.

Simulation of systems has long been used to predict
behavior under certain conditions. The availability of
affordable, high-speed computers has made simulation of large,
complex systems a standard part of system design. However,
there are inherent characteristics of simulation that make the
discovery of many types of sneak conditions unlikely.

2. PREDICTING THE LOCATION OF
THE NEEDLE IN THE HAYSTACK

Simulations are input-driven, what-if analyses.
Determining the sets of input conditions which can cause an
unexpected output can be very difficult. Consider the simple
two-input "black box" system shown in figure 1.

Figure 1 Two-Input Black Box System

For simplicity, assume that each input can only assume
one of two states, high and low. When considering the
possible system input combinations, many people may think
of the four static states shown in table 1. However, table 2
shows that there are also eight additional dynamic/static
combinations. One of these 12 combinations may not behave
as expected, or perhaps one of these 12 combinations was
never defined because it did not reflect a typical operation.
Simulation of all 12 combinations and review of the results
are considerable efforts for a system with only two inputs.

Table 1 Table 2
Static Dynamic/Static

Combinations Combinations

A B A B
Low Low Low ↑
Low High Low ↓
High Low High ↑
High High High ↓

↑ Low

↓ Low

↑ High

↓ High

↑ and ↓ denote positive and negative transitions, respectively

Also consider the situation where both inputs change
simultaneously as shown in table 3. This provides another
four combinations.

Further consider the case illustrated in table 4 where
both inputs change but with a time delay between the
transitions. When the delay between the transition of input A
to input B is more than 6 nanoseconds but less than 9
nanoseconds, an unexpected output occurs. We haven't even
determined the exact range of delay times that will yield the
unexpected behavior. Suppose the simulation had tested for

INPUT A

INPUT B

OUTPUTBLACK BOX

RF 94RM-058: page 2 RF

delay times of 10, 20, 30, etc., nanoseconds? Suppose that we
had kept our simulation intervals tight at 1 nanosecond, but
the problem behavior did not occur until 23,486 nanoseconds
of delay from the time that signal A transitions positive until
signal B transitions negative? The inclusion of time provides
a continuous analog variable and therefore an infinite
combination of possibilities to consider, even in this simple
example.

One example of this type of problem which was
uncovered by Sneak Analysis existed in a radar altimeter.
Simulation had been used throughout the design of the

altimeter to make valuable design tradeoff decisions, find
problems and check proposed remedies, optimize producibility,
and verify operation under various conditions. The altimeter
would take 100 samples and average them to assure accuracy.
As shown in figure 2, a counter was used to determine when
the 100th sample was complete. This set a latch to enable
parallel loading into a shift register of 16 bits of data which
represented the altitude. When the navigation system required
updated altitude data, it would send an altitude data request
followed by a string of altitude data clock pulses to serially
shift out the altitude data from the shift register. To assure
that the completion of a set of samples did not result in
dumping new data during the middle of a shift-out of altitude
data, the altitude data request signal was used to inhibit the
sample counter.

However, if the navigation system sent its request while
the 100th sample was being taken, the inhibited sample signal
would appear to the counter as if the 100th sample had been
completed. This would cause new data to be loaded after two
bits of data had been shifted out of the shift register. This
resulted in moving all data bits except the two least-significant
bits two places to the left. Therefore, a digital output of 0000
0110 0000 000 (representing 2,047 feet) would appear as 0001
1000 0000 0000 (representing 8,191 feet).

This system had undergone extensive simulation and
hardware testing, neither of which had revealed this problem.
When the Sneak Analysis reported the problem, the initial
reply from the design team was that the problem could not
exist because it had not shown up in simulations or test.
Subsequently, a test was conducted in which the timing was
forced to that described by the Sneak Analysis, and the
altimeter provided the improper output.

Similarly, simulation of software presents the problem
of numerous combinations of paths through the software code
coupled with all the possible combinations of the values that
the variables can assume.

Sneak Analysis, on the other hand, does not attempt to
step through the combinations of inputs that might exist in a
system. Instead, Sneak Analysis utilizes a knowledge base
known as sneak clues. These clues are applied to a database
which contains all connectivity paths (electrical current flow,
software program flow, hydraulic flow, data/signal flow
through these subsystems, etc.). The database also contains
information on component attributes related to the clues. The

Table 3
Simultaneous Dynamic

Combinations

A B
↑ ↑
↑ ↓
↓ ↑
↓ ↓

↑ and ↓ denote positive and negative transitions, respectively

Table 4 Delayed Dynamic Combinations

A B Time Delay From
A to B

Result

↑ ↑ 1 nanosecond Expected

↑ ↑ 2 nanoseconds Expected

↑ ↑ 3 nanoseconds Expected

↑ ↑ 4 nanoseconds Expected

↑ ↑ 5 nanoseconds Expected

↑ ↑ 6 nanoseconds Expected

↑ ↑ 7 nanoseconds Unexpected

↑ ↑ 8 nanoseconds Expected

↑ ↑ 9 nanoseconds Expected

↑ ↑ 10 nanoseconds Expected

↑ and ↓ denote positive and negative transitions, respectively

FROM
NAVIGATION

SYSTEM

SERIAL /
PARALLEL

SHIFT
REGISTER

SERIAL
ALTITUDE DATA
TO NAVIGATION

SYSTEM

PARALLEL
ALTITUDE DATA

FROM
ALTIMETER

SHIFT /
LOADALTITUDE

SAMPLE
COUNTER

ALTITUDE
SAMPLE

COMPLETE
ALTITUDE

DATA
REQUEST

ALTITUDE
DATA
CLOCK

Figure 2 Improper Altitude Can Be Reported Depending on Timing

RF 94RM-058: page 3 RF

detail-level graphical representation of the database is known as
network trees. The system-level graphical representation is
known as forests. Sneak clues are visible attributes on the
network trees and forests which point to specific problem
types which might exist in the network tree or forest being
analyzed.

For example, in the logic shown in figure 3, the signal
that originates at point A splits and then travels through two
paths, one in software and one in hardware. The result of these
operations on signal A rejoins at AND gate #2. Without
analysis of the desired operation or consideration of the
possible combinations that the three inputs can assume, a
general sneak clue can be recognized in the pattern which is
highlighted by the arrows in figure 3.

This general clue can be further classified. The sneak
clue knowledge base tells us that when this pattern exists and
the rejoin occurs at an AND function, a sneak-timing glitch
can occur at the output if one path has an odd number of
inversions, the other path has an even number of inversions,
and the path with the odd number of inversions is the slower
of the two. In this example, the software provides one
inversion of the signal, and also provides a longer time delay
than the other (software is slower than one AND gate in
hardware). The sneak clue knowledge base also tells us that
the result of this sneak timing condition is a short positive
pulse that occurs when input A transitions from a low state to
a high state as shown in figure 4.

After identification of the potential of the timing glitch,
the next step is to determine if the timing glitch, should it
occur, has an impact on the system. If, in the example,
output F controls a light bulb, then it is unlikely that it would

be noticed. However, if output F is connected to the clock
input on a counter, then an extra count of the counter would be
recorded.

After determining that there is a potential impact to the
system, the next step is to ascertain whether the combination
of conditions necessary to cause the sneak condition is
prevented. In figure 3, it is easily determined that for the
sneak paths to be enabled, both inputs B and C must be in
their high (true) states at the time that input A transitions
from a low to a high state. The origins of inputs B and C will
be shown on the network trees and forests. If the trees and
forests show that there are no common elements in the paths
that contribute to signals B and C, then there is nothing to
prevent both of these signals from being in the high state at
the same time. In a like manner, the trees and forests would
be checked for common elements between inputs A and B. If
there are no common elements, then there is nothing to
prevent the sneak condition from occurring and it is, therefore,
possible. If there are common elements, then they must be
examined further to determine if the sneak condition can occur.

At this point, it may be useful to employ simulation to
verify that the deduced input combinations for the sneak
condition will result in the suspected problem. Also,
simulation can provide the values of timing parameters
involved and a measure of how they may change dependent on
circuit components or software parameters.

3. HIDDEN INPUTS

A system's data flow is mapped initially in block-
diagram form, perhaps without regard to whether parts of it
will be implemented in software or hardware, or which
particular integrated circuit families might be used. As
portions of the design are firmed up into hardware, power and
ground connections to the physical devices must be added. The
effects of system power-up are usually considered; however,
the effects of power-down, especially partial or unorderly
power-down may not be fully considered. Also, these
necessary power connections may act as additional, unintended
logic inputs as in the power supply voltage monitor of figure
5.

If the System "A" 5-volt supply fails suddenly to a
value below that required to operate the AND gate, the
POWER SUPPLY GOOD output from the AND gate will be

IF A = TRUE AND B = TRUE
THEN D = FALSE

SOFTWARE

A

C

B D

E

F

AND
#1

AND
#2

Figure 3 A Signal That Splits and Later
Rejoins is a Sneak-Timing Clue

A

D

E

F

Figure 4 Timing Diagram for Figure 3 Shows
a Glitch Can Result at Output F

SYSTEM A
5 VOLTS SYSTEM B

5 VOLTS

SYSTEM A

8 VOLTS

SYSTEM A

15 VOLTS

SYSTEM A
5 VOLTS

POWER
SUPPLY
GOOD

15 VOLT
COMPARATOR

8 VOLT
COMPARATOR

5 VOLT
COMPARATOR

+

+

+

SYSTEM A SYSTEM B

TTL
DEVICE

HIGH
IMPEDANCE

STATE

FAILED

FAILED

Figure 5 Failed 5 Volt Power Reported as Good

RF 94RM-058: page 4 RF

an open circuit. However, if the receiving device in system B
is of the transistor-transistor logic (TTL) family, it will
interpret the open circuit as a logic high level and report that
the power supply is totally operational.

4. DETAILS, DETAILS

Details of the design implementation, often not
accounted for in simulation models, can cause sneak
conditions. For example, a redundant control system used
current driver integrated circuits powered by 28 volts. It is
customary to provide a return path for 28-volt devices through
28-volt ground as was done in this control system and as
illustrated in figure 6.

No problem was revealed by simulation or testing.
When a government-furnished data recorder was installed into
the system for flight, every time the tape recorder was turned
on, the system would report a failure of the primary control
system. However, Sneak Analysis revealed that the only 28
volt path through the current driver integrated circuit was
through the output. The ground pin on the current driver is
used internal to the current driver as a reference for the 5 volt
input signal. Each time the recorder was turned on, a large
filter capacitor across its input acted as a temporary short
circuit. The resulting current spike momentarily raised the
potential of the 5-volt return, and thus the level of the
PRIMARY FAULT signal. The current driver, having its
return referenced to 28-volt ground, interpreted this voltage
shift as an actual PRIMARY FAULT signal. Changing the
connection of the current driver ground pin to the 5-volt return
corrected the problem behavior.

Software instructions can also contain surprising modes
of operation which only appear under unusual conditions. The

ways in which certain instructions are compiled and the way
numbers are modeled and manipulated in software can produce
unexpected results not accounted for in the system design.

5. CAUSES OF SNEAK CONDITIONS

Sneak conditions have been found to be caused by three
main factors. These are called the spaghetti factor, the tunnel
vision factor, and the human factor. The spaghetti factor, as
its name implies, deals with the entanglement of multiple
functional and electrical paths. This occurs both in a system
design and in the data which represent the system.

Contributors to the spaghetti factor include the size and
complexity of modern systems and the layout of data. The
numerous inputs and outputs which are cross-fed resemble a
bowl of spaghetti. Most of the data which represent a system
are organized for manufacturing purposes. These data with
their many crossed signal lines can hamper complete
understanding of all the ways in which the system may
behave. The modeling of the design for simulation is
sometimes adversely affected by the spaghetti factor. Also,
some sneak related behaviors of components are not included
in simulation models because they are not known to the
modelers or are considered too weird to worry about. Most
designs are usually complex enough so there are many inputs
and outputs. Most of the inputs affect multiple outputs.
These inputs and outputs interface to circuitry on other
assemblies. All of these elements contribute to the spaghetti
factor.

The tunnel vision factor deals with the splitting of the
design and the system documentation into pieces. Most
systems are split up among multiple contractors. Each
contractor may split the design into various departments.
Technology specialists, such as digital designers, analog
designers, software engineers, power supply designers, and
application specific integrated circuit (ASIC) designers add to
the division by speaking different languages, when they speak
to each other at all. This division causes data segregation so
complete, detailed operation of even a single function is like
traveling a maze. Further, changes to the original design
complicate matters and have proven to be a source for
introducing sneak conditions into previously clean functions.
Because limited budgets are always a problem, there is a desire
not to replicate what the designer of the interfacing equipment
or software is doing; therefore, the "big picture" is sometimes
not seen. Relationships between various parts of the design
are sometimes not seen until integration into topological
network trees and forests and, therefore, are sometimes not
included in simulations.

The ASIC design function is usually segregated from
the remainder of the system design effort and is performed by
specialists. Often, ASIC design is subcontracted, and in
addition, involvement of the ASIC vendor occurs to varying
degrees. ASIC design uses somewhat different design tools
than those used for circuit cards. The schematics and netlists
for ASICs look different from those for circuit boards. The
specifications for ASICs which we have seen in our analyses
are more vague and incomplete than those for other circuitry.
These items contribute to the tunnel vision factor which is
greater for ASICs than for board design.

The third contributing factor to sneak conditions, the
human factor, involves people in the design and operation of a
system. In design, two people working from a specification
may interpret that specification in different ways. This can
result in an incompatible design interface. The nature of these
differences of interpretation often result in designs that work in
the lab and even most of the time in the field. However, they
cause occasional and sometimes very serious results for which
an explanation is difficult to find. The human operator of a
system can also be a contributor to the occurrence of a sneak
condition. Operators are faced with ambiguous procedures,
controls which do not do exactly what their labels indicate, and
system indicators which may not provide the actual system
status. They may have to make split-second decisions in panic

PRIMARY FAULT

28 VOLTS5 VOLTS

28 VOLT GROUND5 VOLT GROUND

RESISTANCE IN RETURN PATH

5 VOLTS

DATA

RECORDER

CURRENT DRIVER

Figure 6 Turning on a Data Recorder Caused the
Current Driver to See a PRIMARY FAULT

RF 94RM-058: page 5 RF

situations. Such situations are likely to prove an axiom of
Murphy's law which states: "The likelihood of a sneak
condition occurring is proportional to its criticality to safety or
the rank of the visitor who is watching the demonstration."

6. THE UNIQUENESS OF THE
SNEAK ANALYSIS APPROACH

Rather than assuming any particular scenario of input
conditions, Sneak Analysis utilizes the application of clues to
topological network trees and forests. The use of network
trees and forests reduces the spaghetti factor by separating
functions into individual network trees and forests. It reduces
tunnel vision by combining piecemeal functions from various
data sources and physical locations into a single network tree
and combining hardware and software subfunctions into system
functions on forests. It also allows evaluation of human
factors. While Sneak Analysis is not well suited to running
"what if" scenarios, clue application is not limited to specified
procedures or mission profiles as are simulation and testing.
Therefore, simulation and testing may not reveal sneak
conditions.

Whenever possible, computer-formatted data such as
hardware netlists and software program code furnished on
magnetic media are directly loaded into the system. Computer
processing combines these data together along with a library
which provides details of integrated circuits and software
language operation. The tracing of both electrical and
functional paths by the Sneak Analysis programs results in
topological network trees and forests.

The network trees show individual functions which may
cross through multiple physical boundaries such as circuit

cards, boxes, or cables. A sample network tree which contains
circuitry from an ASIC is shown in figure 7. Note that this
network tree also integrates circuitry contained on the circuit
board, a cable, and an external module.

Forests show how the network trees relate to one
another and provide a system-level view of a particular system
output function. A forest will show all inputs which can
affect the forest output. A sample forest is shown in figure 8
which contains the network tree from figure 7.

7. RESULTS OF ANALYSES

Three recent Sneak Analyses of systems resulted in the
identification of 91 conditions of possible unexpected behavior
which had not been uncovered by extensive simulation and
testing. Most of these conditions resulted in changes to the
hardware design or software code and several were considered
safety critical. Simulation was used to verify the problems
once they were uncovered by the Sneak Analysis, and to better
understand the impact of some of the reported conditions. The
investigation of various proposed fixes for the problems also
employed simulation.

The problems uncovered by the Sneak Analysis in these
systems were found prior to production hardware being built.
In one case, a safety critical sneak condition involving an
ASIC was found and reported one week before mass production
of the ASIC chip was scheduled. For each of these analyses,
the customer stated that the identification of even just one of
the sneak conditions more than paid for the cost of the
analysis.

ASIC �#1/SEQUENCER

Z
A

B
AN3

C
D

TI

RD

TE

Q

SCAN

C

ASYNRST

X: 82

CLOCK

X: 81

TEST

X: 83
A Z

IV
Z

A

B OR2Z
A

B AN2

A Z
PAD

ASIC �#1

XBLK515(Q)

X: 85

HVF

X: 123

IMPACT

X: 86, 90

X: 92

XBLK1093(Q1)
X: 85

X: 92

17

XIMPACT
IMP SW

A

Network Tree # 91

PS5

X: 10

R17

10K

E20

E8

E1

W1

3A1A6A1A1A5

ARMING MODULE

IMPACT

SWITCH

C25

0.01

3A1A6A1A2A9

CIRCUIT CARD

PREARM

Figure 7 A Network Tree Spanning Several Assemblies

RF 94RM-058: page 6 RF

8. OTHER BENEFITS

The network trees and forests produced for the Sneak
Analysis are often used to perform Fault Tree Analysis and
Failure Modes, Effects, and Criticality Analysis. The network
trees and forests provided a clear and accurate representation of
the paths through the system for tracing failure effects.
During the analyses, numerous design changes occurred which
were incorporated into the network trees and forests. Some of
these changes resulted in additional sneak conditions which
were found and reported before the change was applied to actual
hardware.

BIOGRAPHY

James L. Vogas
Boeing Aerospace Operations, Inc.
P. O. Box 58747
Houston, Texas 77258

Jim Vogas is a Principal Engineer in the Sneak Analysis
group. He has responsibility for Sneak Analysis product
improvement and is responsible for training of sneak analysts in
the latest Sneak Analysis methodology as well as avionics and
technology areas. He has over 17 years experience performing
and leading Sneak Analysis, Failure Modes and Effects Analysis,
and Fault Tree Analysis projects. His Sneak Analysis experience
includes military and commercial aircraft, missiles, spacecraft, and
advanced weapon systems. He is also involved in the
improvement of Sneak Analysis techniques and is working on
design of improved automation. He has recently developed
computerized sneak clue lists for the Ada and Modula software
languages. He holds a B. S. in electrical engineering from Texas
A&M University.

LMTRFIR

NT 90

NT 91

NT 87

NT 259

NT 85

NT 88

PREMATURE
IMPACT SW

T

SECOND

FINLOCKL

CATA

CATB

VELO 10-
16

X: 123
FOREST 123

LHVFB

CATB

CATB

CATB

NT 92

NT 30

NT 260

Q5-Q17

Q7-Q17

HIGHSEC

X: 9
PS1

X: 1
15VRTN

NT 31

X: 9
PS1

X: 1
15VRTN

+

-

FINLOCK
SE

CATA

NT 262
CATA

NT 261

CATA

NT 263 ACCEL

NT 19 LMFIRE

+

-
SE

NOTES:

CATA = ASIC#1 CLOCK, X: 206;
 ASYNRST, X: 202;
 TEST, X: 203

CATB = ASIC#2 CLOCK, X: 81;
 ASYNRST, X: 82;
 TEST, X: 83

HCRTN = HIGH CURRENT
RETURN
SE = FROM STAB. ELECT. BOARD

T = ASIC#2 TEST, X: 83

X: 16
FOREST 16

ACCEL
OUT

PREARM

LOCATION OF
NETWORK TREE

SHOWN IN FIGURE 8

Figure 8 A Forest Shows All the Inputs That Affect a System Output

